2011 甲壳素及其衍生物 360°产业论坛 中国·上海 2011 年 12 月

王曼莹

江西师范大学 生命科学学院 江西中医学院 生物技术研发中心 江西省食品与生物技术产学研结合示范基地

提纲

- 一. 甲壳素产业的核心问题
- 二. 甲壳素工业用酶的趋向
- 三. 食用壳寡糖的清洁生产
- 四. 规范 & 标准是生命线

一. 甲壳素产业的核心问题

清洁生产问题

产品质量问题

标准规范问题

有序竞争问题

二. 甲壳素工业用酶的趋向

环境污染日趋恶化 绿色壁垒阻挡产品出口

甲壳素产业持续发展面临的难题 清洁生产 减少污染 确保质量 食用安全

生物技术产业的必由之路工业生物催化

生物酶催化工业生产的现状

已报道的酶达 3000 多种

商品生产的酶 200 多种

用于工业生产的酶 50 多种

用于大规模工业生产的酶仅 10 多种

目前用于壳寡糖工业生产的酶为()

专一性壳聚糖酶的研制

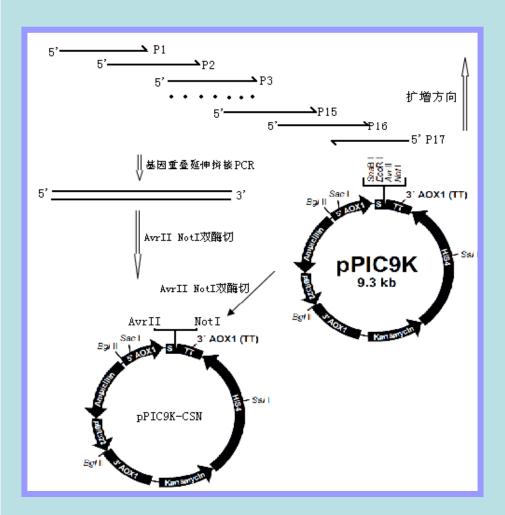
壳聚糖酶的分类

Substrate specificity of chitosanase

酶类	断裂的键	代表菌
I	GIcNAc-GIcN,	B.pumilus BN-262
	GIcN-GIcN	Streptomyces N17
		P.islandicum
II	GIcN-GIcN	Bacillus sp. No 7-M
III	GIcN-GIcNAc,	S.griseus
	GIcN-GIcN	B.cirulans MH-K1
		Streptomyces griseusHUT6037

专一性酶法生产壳寡糖的难度

国内许多单位长期致力于酶的研制 自然界存在较少----筛选高产菌株困难 多数壳聚糖酶内切、外切活性共存 酶的稳定性差 产酶菌不稳定 野生菌的毒性 发酵液中目标酶难于纯化


三. 食用壳寡糖的清洁生产

売寡糖/水溶性壳聚糖生产现状

强酸降解 强氧化剂降解 超声加氧化剂 非专一性酶降解

缺 陷 得率低 纯度低 分散度大 有衍生物 污染环境

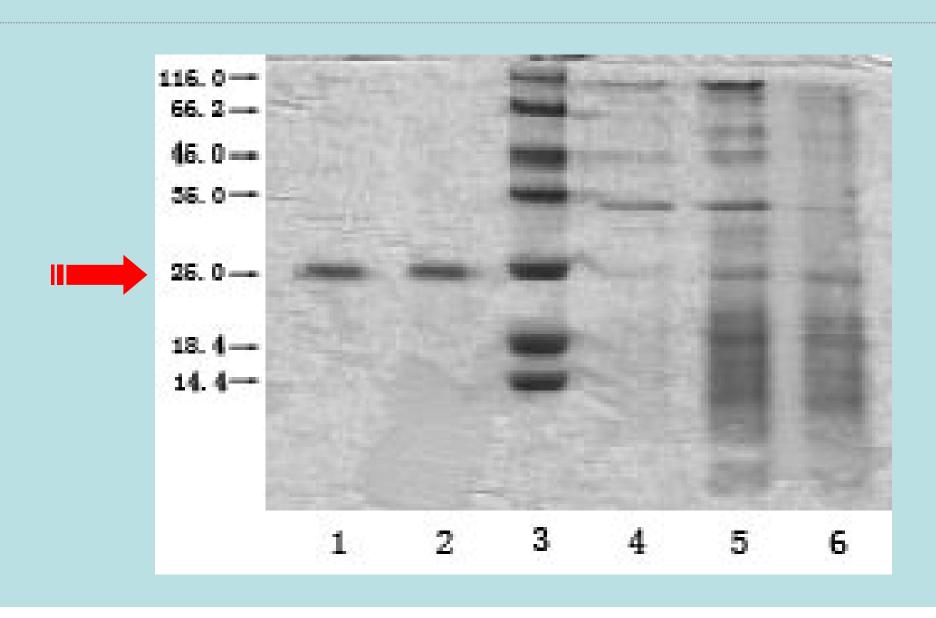
CSN基因扩增和重组体构建示意图

壳聚糖内切酶基因

酵母菌表达系统

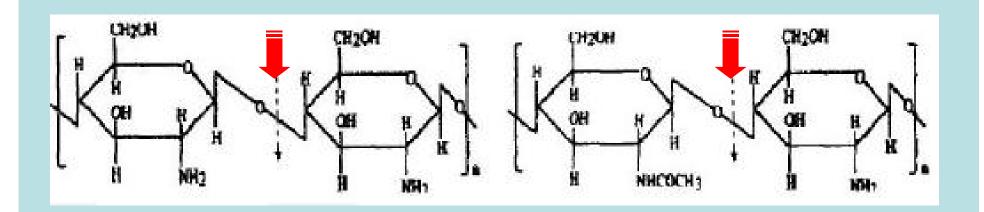
定点突变

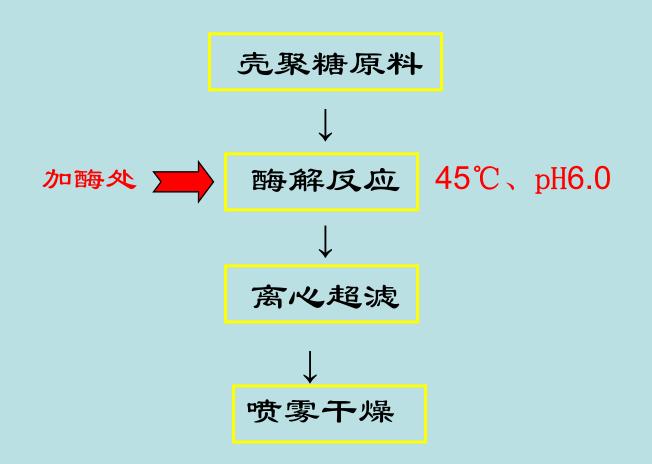
修改密码子


拼接PCR扩增基因

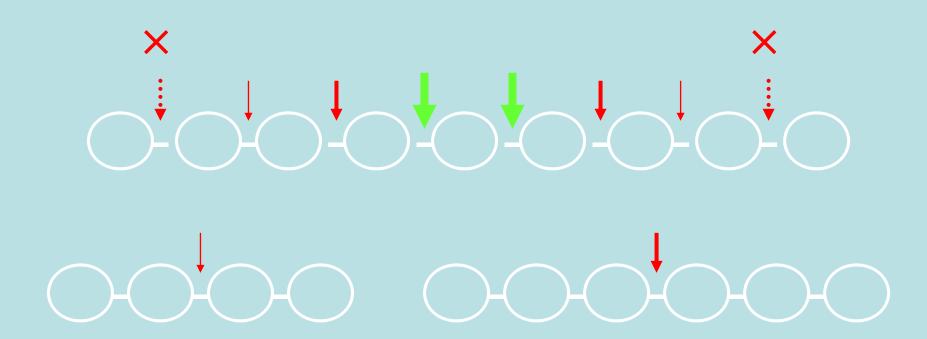
构建pPIC9K-CSN表达载体

为 10⁷ U/年 壳聚糖內切酶奠基


酶的纯度为单一蛋白带


売聚糖内切酶性能

酶的作用模式


GICN-GICN GICNAC-GICN

三. 食用壳寡糖的清洁生产

酶催化降解作用位点

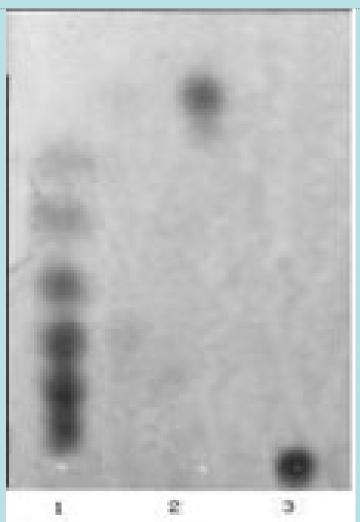
酶解产品中 无单糖 二糖极少

酶解产物高品质

单糖

二聚

三聚


四聚

五聚

六聚

七聚

原料

无单糖

无衍生物

低分散度

1 G1 c 医内 切腾四条 新巴克斯维产物

2 報題動物標(原標)

3 表際額

四. 规范 & 标准是生命线

企业的生命是质量

质量的生命是管理

管理的生命是规范

规范的生命是标准

国外市场的开拓

